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Creation of a mirror space

Hiroyuki NAGAI*

1 Introduction

The decay of the false vacuum under the effects of gravitation was studied
first by the authors of [1]. In the semi-classical limit, the decay probability
is given by

P= Ae—SE(¢b,9b)+SE(¢0a90), (1.1)

where (¢, gy) is configuration of the scalar field for the bounce solution and
the background metric, and (¢, 9o) is configuration for the false vacuum
solution. Sg is the Euclidean action. |

The idea that our universe may be created from nothing, rather than
from the false vacuum, was proposed by [2], and it was developed to the
theory’[3] that the universe as a space-like cross section of a, configuration
of (¢, g) is described by the wave function

U = Z e~ 5E(®9) (1.2)

where the summation is over all possible configuration of (¢,g) that is
specified on the given space-like surface and have no boundary at past. In
the semi-classical approximation, the contribution to the summation comes
dominantly from the classical solution and if the configuration continues
analytically to a bounce solution, the probability of the universe is given
by :
P = Ae=SE(¢o.9) | : (1.3)

In this paper, I study the probability of the creation of a mirror space
that is a compact curved space with a domain wall. It is shown that such
a mirror space is created naturally. ‘

We review in section 2 and 3, the Junction condition and the equation
of motion for the domain wall [4][5][6][7]. In section 4, we define the mirror
space and find the bounce solution for the mirror space. In section 5, we
calculate the Euclidean action for the bounce solution and the probability
of the creation for the mirror space through this bounce solution. Section
6 is devoted to discuss our result. I use the unit 87G = 1.
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2 Junctio.n equation- |

A point on the surface of a spherically symmetric domain wall is described
by z* = (7,6, ¢) with the hne element,

ds? = —dr? +r( )2dQ?, (2.1)

where dQ? = d6? + sin? 0d¢?. Introducing 1, a coordinate orthogonal to
the surface of the domain wall, a point in the neighborhood of the wall is
descrlbed by z* = (n, z*) with the line element, ’ :

ds’ =dn’ —dr’ + r(r)zdﬂz. : - (2.2)

In this coordinate system,'the Einstein equations can be divided to 341
form as | , _ . ,
o Gnn = Tfma Gm = Tm’ Gu = Tm (2 3)

‘We use the Latin index 7, j (and k,m later) to indicate the components
orthogonal to 5. In the thin wall approximation, the stress-energy tensor
is written as - _ , A
| - T, = Swo(n) + reguler term, (2 4)
where S,,,, is descrlbed in terms of the surface energy o and the tension ¢
of the domain wall as

Suw = o(T)uuu, — C(%)(h,w + uuuy).

‘Here u“ is the 4-velocity of the domain wall and h‘“’ is the metric projected
on the domain wall, _

| W= g - it (25)
' (a:) is a umt vector orthogonal to the 1 =const hyper surface. -

T, near the domain wall is formed by the potential term proportinal to
guv and the kinetic term proportinal to 8,¢0y¢, so that T;; is proportional

to hij and we get ,
o(r)=¢(r). o 26)

In company with this equatlon the conservatlon of the energy momentum
leads that o is 7 independent, so that the energy momentum tensor is

~ written as , . . s
Ti; = —ohi;6(n) + reguler term. (2.7)

‘We -can recast the Einstein tensor to 3+1 form also In"the",Ga'usls'.'
Codazz1 formalism, G,, turns to ' R

Gi; = 3Gij_-an(KzJ thK) [K ZJ" zJ(Kkakm Kz)] ( 8)
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where the extrinsic curvature is defined by -

1 A
Kij — “F;]j = iangij, (29)
and - | ’
K = g”Kij. (210)

- Substituting (2.7) and (2.8) to the last equation of (2.3), the singular
part reduces to
o | On(Kij — hi; K) = ohi;é(n), - (21
or

BnKij = —-Z—Ghijd(n). (212)

This is the junction condition, which gives the jump of the extrinsic cur-
vatures of the outer spacetime (7 > 0) and of the inner spacetime (n < 0)
separated by the domain wall.

3 Motion of a domain wall

Consider a domain wall which metric is given by (2.1) and the outer and
inner spacetime are O(3) symmetric. These line elements are described by

dsy = fil(r)dr® — fu(r)dtd + r2dQ?, (3.1)

where =+ stands for the outer and inner spacetime respectively. In each coor-
dinate system, a point on the domain wall is expressed by z% = (r,t+,6, ¢)
and its velocity is

ut = (%,£,0,0). (3.2)
where the over dot denotes a derivative with respect to the proper time of

the domain wall.
In this coordinate system, the extrinsic curvature (2.9) reduces to

Ki? = —;— £0,9:i; = %g;;a,,g,-j. (3.3)
Explicit forms of 860 and ¢¢ components are
'K;-; =&, - (3.4)
K = €ursin, (3.5)
and the junction condition (2.12) is written as
fi—t=—por, - (36)
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where we briefed ¢} as &.. From the orthogonal conditions g, u4€&y = 0
and the normal conditions of v} and ¢4, we obtain

& =fut+i? -f@ﬂ
and (3.6) reduces to | B |
2t fo— (o) e~ fo = (or/2P =0 (38)

This is the equation of motion for the domain wall in the Lorenzian time.
It is easy to continue it to the Euclidean equation. By Wick rotatlon, .
the line element of the inner and outer spacetime becomes

dsi = f; (’I‘)d’l‘ + fﬂ:(r)dti + Tzdﬂz,ﬂ ' (39)
‘where ¢ is the Euclidean time. Then (3.8) reduces to - | o
L= )= fo - or/2P =0, (310)

where the dot denotes a derivative for the Euclidean proper time.

4 Bounce solution for a mirror space

Assume a Z(2) symmetric potential V(|#|) for a real field ¢ with two de-
generate vacua at ¢ = +¢g. The domain wall solutlon gives a configuration
to connect these two vacua -

Figure 1: The de Sitter mirror space embédde’d in a flat ‘space, where the co-
ordinate ¢ is omitted and 6 is taken to cover from 0 to 2. The domain wall
locates at the edge and glues the face and the back.

A compact space can be constructed by conr;ecting'e pair of "ccirupact
O(3) symmetric 3-spaces, a face space (¢ = ¢o) and a back space (¢ = —¢y)
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that are enclosed by the domain wall. See Figure 1. In such a construction,
the face and the back are duplicate each other except the sign of ¢ and
have the same cosmological costant. We have called this compact space
the mirror space.

To study the creation of the mirror space, we will find a bounce solution
that mediates from nothing to the mirror space, and subsequently from the
mirror space to nothing. See Figure 2(b).

\J ' \J '
Figure 2: (a) The trajectory of the domain wall in the Lorentzian time (the

upper half) and in the Euclidean time (the lower half) (b) The bounce solution
in the Euclidean time.

Since f. = f_ and & = —£_ for the mirror space and (3.8) does not
change by the over all sign of £, omitting the suffix of & in £+ and fi we
can write the line elements of the face and the back as

ds? = f~(r)dr? + f(r)dt® + r2dQ?, - (41)
and (3.8) as '
where
| ap = (o/4)7 L. - (4.3)
The O(3) symmetric homogeneous curved space is described by
f=1- %r{ | - (44)

where it gives the de Sitter space When A > 0 and the anti-de Sitter space
when A < 0.
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The equation of motion for the domain wall (4.2) reduces.to -

) (4.5)
The solution is ' ' S
r=asin(e7'7), (4.6)
where _
a=(ag’+ A/3)7V2, (4.7)

For the de Sitter space a < ag, and for the anti-de Sitter space a > ag. In
both cases, the Euclidean spacetime enclosed by this trajectory of the do-
main wall is clearly compact and we can recognize it as a bounce solution*.
The radial size a of-the bounce solution is the size of the mirror space
at the creation. It is clear that the size of the anti-de Sitter mirror space
is larger than the size of the de Sitter mirror space.
The line element of-this bounce solution is

ds® = a®(dr? + sin Tsz)‘. : (4.8)

We can recast this bounce solution in terms of the coordinates of (4.1).
From the deﬁmtlon of the proper tlme we get

"2(f — %), (4.9)

which gives a relation of r and ¢ as follows
2= (- a )y, (4.10)
‘where the sign ambiguity of the square root is absorbed into the definition

of t.
Integratmg (4.10), we get a solutlon for the flat space as

aqt? —1- -2 . (4.11)

For the curved case, using x = 4/3/|A|, we describe a solution for the de
Sitter space o P - '
ag2x? tan®(x7't) = 1 — a”%r?, | (4.12)
*When A/3 < —a2, (4.5) reduces to —#2 +1 + a~2r? = 0, which has no bounce
solution. The bounce solution is formed by the shrinking force of the domain wall in the
Euclidean time. The negative cosmological constant weakens thns shrinking force, while
the positive cosmological constant strengthens. For A/3 < —a}, the expanding force

of the negative cosmological constant surpasses the shrinking force so that the ‘botince
solution can not be formed.
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‘and CL
ap®x*tanh®(x7t) = 1— a7, (4.13)
for the anti-deSitter space.

The radial size a given by (4.7) and the time size given by the above
solution decrease monotonically as A increases from —3agy 2 to 00.
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Figure 3: The solid line shows the radial size and the dot line shows the time
size of the bounce solution as a function of A.

5 Probability of the creation of mirror spaces
The probability of the creation of the space from nothing is given by
P = Ae—Se(%5.9) (5.1)

The Euclidean action is calculated by

Se = [ Vada* [—%R _ L.m] , (5.2)

where the boundary surface term is omitted because the mirror space is
compact.
The relevant equations are the Lagrangian of the scalar field ¢;

L= —20" 8,00~ V() 53

the Einstein equation;
1
le — §Rg’“/ = Tul/’ " . (54)
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where

Boottmon(Peive). 69
| and _thg field equaft.;io,n;l - : | o
| -1/3 2] _ 4V () -
- 12 [(_ \1/2 4, _ N
(~9) 2 [(~9)"2¢¥] - == =0 (56)

These equations are described using the coordinate system of |
ds® = dn® + a2d®Q?, o —(5.7)

‘near the domain wall. Eq.(5.6) reduces to

av( . ‘
¥ dgb.) =0 (59
and 1ntegrat1ng it, we obtain

2 V(¢) Vo, - (5.9)

where Vp is the potentla.l at the vacua ¢ :!:¢0
Taking the trace of the equation (5.4), we get

R=¢?+4V(¢), . (5.10)

~ where the dash denotes d/dn, ‘and the Euclidean action becomes a simple
form, |

- —/fV T (5.11)

Here S/ is calculated from (5. 5) - _ |
= [ Tgan = /_ (Vi) + Vo) dn =2 / Vgdn  (5.12)

'The contrlbutlon from the domé,ln wall is glven by .

| = ———a / Z (519

Thus we get . .
R 1 e [ 4

Se=-50 fs Vhda® - 2A /v Jgda?, (5.14)

where we used the relation ¥y = A. S denotes the 3—Si1ffaée of th‘e“l;;)ﬁnce:

solution and V denotes the spacetime of the face (or the back) edged by S.
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The factor 2 of the second term comes from the sum of the face and the
back.

The bounce solution of the domain wall forms a 3-sphere of a radius
r = a, So that :

S = 2n%ad, (5.15)
The volume of the face enclosed by the wall trajectory is
V= 4?” r(t)3dt. (5.16)
Since ¢/7 given by (4.10) is a one-valued function of r, it reduces to
V= r3(t/7)dr, (5.17)
or 2
V= 7a 1a%¢(a®A/3). (5.18)

Thus, the Euclidean action of the bounce solution becomes
Sg = —4n?aytad — §ﬁ2Aa51a5C(a2A/3). (5.19)

Here ( is a deformation factor of the bounce solution caused by the space
curvature;

((z) = / (1 - zsin?8)~ sin 646, (5.20)

which grows monotonically as z increases.

The Euclidean action was given as a function of two parameters ao and
A. Here we can consider that a is first determined from the parameter of
the elementary particle theory and quest the probability of the creation for
the measure of A only. I calculated (5.19) numerically and show the result
in Figure (4). It shows that most likely created is the de Sitter mirror space
with A = —3a52

Let me make sure the asymptotlc behavior of (5.19). Fora —» 0 (A —

), ¢ < Aa} is satisfied and |

|the second term of Sg| < 37%aqa, (5.21)

so that Sg approaches 0 as a — 0. For a — o0 (A — —3a2), with the help
of the approximation ¢ ~ —z~! — 2272 at £ — —o0, (5.19) becomes

SE ~ —247%|A|” 1ao a, o (5.22)

which falls toward —oo as a — oo.
The Euclidean action for the flat case reduces to

Sp = —4ra5'd®, (5.23).
whlch is glven by the authors of ref.[8].

— 159 —



Hiroyuki NAGAL-

-20}

_40.

-80¢+

-100¢

Figure 4: The Euclidean action Sg for the de Sitter mirror space (A > 0) and
for the anti-de Sitter mirror space (A < 0).

6 Discussion

It was shown that the mirror space is created naturally through the bounce
solution and the most likely creatlon is for the anti-de Sitter one with the
cosmological constant A ~ —o2.  The probability of the creation for this
mirror space is infinitely large and it surpasses the creation of spaces with
~ other geometries, for instance, the de Sitter space with no domain wall
where Sg = —24m%A1[9]. S | |

It may be a baffling result that the larger bounce solution is'more likely
created. We cannot consider physically the bounce solution with the infinite
size. So, we must expect that its maximum is determined from'some physics
in future.

Is there any way to dodge this unsettlement? The above result is directly
from the assumption of the no-boundary condition. Linde insisted [10] that
the wave functlon should be glven rather, by the antl-chk rotatlon as

\If Zess(d’.g) " (6.1)
so that the probability of the crea,tlon is as follows
P = AeSE@g) (6.2)

If we adopt this, the most likely space turns to the de Sitter mirror space'
with an infinitely large cosmological constant with Sg = 0, which is-harm-
- less because of the suppression by the other possible spaces with Sg > 0.
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The further study on the creation of the mirror space will provide an im-
portant clue to decide which is the adequate boundary condition for the
wave function of the universe.
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