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Spatial Evolutionary Prisoner’s
Dilemma Game by Diffusively
Traveling Individuals

N aganori HIJIKURO 1

1 Introduction

The origin of cooperation observed in a group consisted of egoistical
individuals is an interesting subject in biology and human sciences. In
order to make up a cooperative society, is any powerful force necessary?
Or is cooperation fostered spontaneously? The evolutionary game theory
has been introduced as an approach to such problems [1].

In the early evolutionary game theory, the system concerned has been
supposed to be homogeneous. Its main interest was to find an evolutionary
stable strategy that can be predominant in the group. The spatial evolu-
tionary game theory has been developed by adding the spatial dimension
to the classical evolutionary game [2, 3, 4]. Individual players arranged in
the spatial lattice are characterized by the strategies which they take. Ev-
ery individual plays games with his neighbors, and they reconstruct their
strategies following some rules related to the payoff of their games. The
system evolves by carrying out the above reconstruction simultaneously
and iteratively. Therefore, the spatial evolutionary game is considered as
a cell automaton, which recently attracts attention as an important model
dealing with the discrete dynamic system in complex system physics[5].

One of the simplest and interesting evolutionary games is the prisoner’s
dilemma game, which is a classical non-zero-sum two-person game. Each
individual chooses either a cooperative strategy or that of defection in their
games. They can get the following payoffs corresponding to their strategies.
A cooperator gets payoff () by playing with a cooperator, and S by playing
with a defector. In contrast, a defector gets payoff P by playing with a
cooperator, and R by playing with a defector. If P > Q > R > S, both
always defect as a consequence of logic, in spite that they can benefit more
by cooperating each other. This is the dilemma.
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In the spatial evolutionary prisoner’s dilemma game, it was shown that
cooperators and defectors could coexist, whereas they were incompatible
in a homogeneous system. Furthermore, it. was reported that this model
presented many kinds of spatial and temporal patterns [2]. One of the
characteristics of a deterministic cell automaton like this is that the behav-
iors of a system depend on the details of local spatial structure. Thus, the
mean field analysis cannot be apphcable Wthh is used in a homogeneous
evolutionary game theory. '

A study of dynamics of spatial evolutionary game from a standpoint
of non-equilibrium statistical physics has been reported recently [6, 7, 8].
Killingback and Doebeli pointed out that self-organized critical state ex-
ists in a spatial Hawk-Dove game. So far, it was known that the spatial
prisoner’s dilemma game had only periodic or chaotic dynamics, and did
not show a critical state [2, 3]. However, Szabo and Toke clarified that
the spatial prisoner’s dilemma game exhibits a continuous transition by
introducing a stochastic choice of strategies [7].

This paper is to investigate what happens in the spatial evolutionary
prisoner’s dilemma game by introducing random traveling of individuals.
One of the reasons to introduce the concept of diffusion is that it is quite
natural for most creatures in the actual ecosystem. The second one is
to extract the characteristics of the dynamlcs by introducing a stochastlc
element to the system. :

Diffusive traveling of players contributes to homogenization of the sys-
tem. The effects that this homogenization causes to the coexistence of
cooperators-and defectors will be investigated. The traveling of individuals
introduces a random fluctuation to the system with complex local interac-
tion between the constituents. From a viewpoint of statistical physics, it
is an interesting problem what kinds of dynamical characteristics are in-
duced by giving the random force to the nonlinear system. Also, it seems
interesting to identify what kind of results will be brought by the external
compulsion of cooperation in spatial evolutionary games [8]. Therefore, the
effect of external force to self-organization will be discussed.

In the next section, a spatial evolutionary prisoner’s dilemma game
without traveling of individuals is described. The problems of coexistence of
cooperators and defectors in a system with random traveling of individuals
are considered in section 3. In section 4, the dynamic characteristics of
the coexistent state of the traveling PDG are discussed. The effect of the
external forces-on the system is consndered in section 5. Section 6 is devoted
to the conclusion.
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2 Spatial Evolutionary Prisoner’s Dilemma
Game

An ordinary spatial evolutionary prisoner’s dilemma game without a
diffusion of players (hereafter ’fixed PDG’) is to be considered in this
section[2, 3, 4]. Players are placed on each site of a n X n square lat-
tice, and adopt either a cooperative strategy or that of defection. As an
initial state, cooperators are located at random at the probability ¢, and
defectors are posted at the rest of the sites.

The state s;(t;) of site 7 at discrete time ¢;,(j = 0,1,2,---) is specified
by the strategy of the player who occupies that site. The state S(t;) of the
system at a time ¢; is decided by specifying the states of all the sites. If the
time evolution rule which decides S(t;1,) for S(¢;) is settled, the dynamical
process is defined by giving the initial state S (to)

The rule of time evolution is defined as follows. Each player plays a
prisoner’s dilemma game respectively with their second nearest neighbors
on eight sites (i.e. Moore neighborhood sites). The periodic boundary
condition is assumed to remove

an influence at the end of lattice. cooperate | defect
The players get the payoff in cooperate || ( 1, 1 )| ( 0, p )
accordance with the following payoff defect (p,0)|(0,0)

matrix of the game. In other words,

a cooperator gets 1 against a cooperator, but nothing against a defector. A
defector get p(p > 1) against a cooperator, but nothing against a defector.
The advantage for defectors, p, is the characteristic parameter of the time
evolution of the system. Each player’s total payoff is given by amount of the
payoff in each play on eight Moore neighborhood sites. The state si(tjs1)
of the site ¢ at time ¢;;, is renewed by the strategy of the player who got
the highest score at the Moore neighborhood sites including itself at time
t.

Thus, the fixed PDG is two-state cellular automaton with a parameter
p. The time evolution from to to ty (= NAt) by the time interval At gives
the discrete dynamic process (S(to), S(t1),- -+, S(¢tn)). The numbers of sites
occupied by cooperators and defectors at time ¢; are denoted respectively
as c(t;) and d(t;), where c(t;) + d(¢;) = n?. The proportion of cooperators
z(t;) = c(t;)/n? at discrete time ¢; is used as a dynamical variable.

The behavior of time series z(¢;) obtained by evolving the system with
lattice size n = 64 depends on the parameter p. The initial configuration
is constructed by giving the probability ¢. Figure 1 shows two typical
behaviors of time series (t;) which start from the same initial arrangement
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Figure 1: The time series of the proportion of cooperators for p = 1.23 (a) and
p = 1.63 (b) in the fixed PDG.(n=64,9=0.7,N=1024) ‘

with ¢ = 0.7. It is clear that the system settles down in a periodic state
for p = 1.23, and a chaotic state for p = 1.63. Coexistence of cooperators
and defectors is possible due to the spatial structure, which is not possible
in the case of homogeneous systems.

From the lattice configuration of steady state at various values of p and
g, we can observe the influence of the initial arrangement (which depends
to the value of the probability ¢) to the steady state and the bifurcation
of steady state by the parameter p. In Figure 2, we denote cooperator’s
site by black, and defector’s site by gray. When the initial proportion is
small(g < 0.4), a delicate difference of the initial arrangement influences
the steady state. However, when ¢ is not so small, it is assumed that
essential characteristics of the system appears independently of its initial
arrangement. If p < 1.6, the system shows a periodic state, whereas a
chaotic state appears for 1.6 < p < 1.7. If 1.7 < p, cooperators do not
appear. In particular, the system forms spontaneously a stable spatial
structure in the periodic state.

In order to investigate the dependence of the behavior of the system
to the parameter p more precisely, the averaged proportion of cooperators
z against p is shown for the fixed PDG with the same initial configura-
tion. In Figure 3 there are many discrete transitions within the coexistent
states(0 < z < 1).The average values z vary a little according to the initial
configuration, but a transition point does not vary.

In consequence of the spatial arrangement of their nerghborhood the
total payoff of a cooperator is either 1,2,---, or 8, and that of a detector
is either p,2p,---, or 8p. This dlscrete property of a possible total payoff
results in the dlscrete transition points for parameter p. There are ten
threshold values for p, {8/7, 7/6, 6/5, 5/4, 4/3, 7/5, 3/2, 8/5, 5/3, 7/4},
in the region of 1 < p < 2. In the region of 8/7 < p < 3/2, transitions
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Figure 2: The steady state configurations in the fixed PDG. Black and gray
boxes denote cooperators and defectors respectively. (n = 64)

occur during the periodic states. The system changes to the chaotic state
at p = 8/5, to the quiescent state at p = 5/3, and to the extinct state at
p="T/4.

In the spatial evolutionary game theory, the probability that a coopera-
tor plays with a defector is not given by the product of their proportions to
total population, but depends on the details of surrounding spatial struc-
tures. As a result of this fact, the coexistence of cooperators and defectors
comes to be possible in contrast to the homogeneous evolutionary game the-
ory. The interaction reflecting a local spatial structure becomes essential
in the spatial evolutionary game, therefore, the mean field analysis turns
to be useless.

We can indicate the following behavior of small clusters in the present
system. One defector surrounded by cooperators oscillates with period 2
(1D = 9D — 1D) for 1 < p < 6/5, and oscillates with period 3 (1D — 9D
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Figure 3: The averaged proportion of cooperators as a functlon of p in the fixed
PDG. (n—64,q_-0 7. N—128) ‘

— 5D — 1D) for 6/5 < p < 7/5. It reposes (9D) for 7/5 < p < 8/5 without
growing nor disappearing, and grows for 8/5 < p < 2, where 9D and 5D
denote a 3 x 3 cluster and a cross of defectors respectively. A 2 x 2 cluster
of 4 defectors (4D) in the sea of cooperators disappears-for 1 < p < 7/5,
reposes for 7/5 < p < 8/5, oscillates with period 3 for 8/5 < p < 5/3, and
grows for 5/3 < p. A cross of 5 defectors (5D) oscillates with period 2 (5D
— 1D — 9D — 1D) for 1 < p < 6/5, oscillates with period 3 (5D — 1D
— 9D — 5D) for 6/5 < p < 7/5, reposes for 7/5 < p < 8/5, oscillates with
period 7 for 8/5 < p < 5/3, reposes for 5/3 < p < 7/4 alsofor 7/4 < p < 2.
9D oscillates with period 2 (9D — 1D — 9D) for 1 < p < 6/5, oscillates
with period 3 (9D — 5D — 1D — 9D) for 6/5 < p < 7/5, reposes for
7/5 < p < 8/5, and grows for 8/5 < p < 2.

On the one hand, a cluster of less than three cooperators surrounded
by defectors disappears always for p > 1. A 2 x 2 cluster of 4 cooperators
(4C) grows for 1 < p < 3/2, and disappears for p > 3/2. A 3 x 3 cluster
of 9 cooperators (9C) grows for 1 < p < 3/2, reposes for 3/2 < p < 8/5,
disappears for 8/5 < p < 5/3, and reposes for p > 5/3.

From the above analysis, it is clear that there exist some threshold
values of parameter p related to the growth and extinction of various small
clusters. We consider that these threshold parameters, especially p.; = 1.5
of 4C and 9C, p., = 1.6 of 1D and 9D, and p.3 = 1.67 of 4D, play an
important role to determine the steady state reached by the system.
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3 Effects of the Diffusion of Individuals

In the fixed PDG, a player located on a lattice site changes its strat-
egy as a result of game with other players in the neighborhood sites. This
1s a suitable model for a group, for instance, the plant ecosystem, where
their members are spatially fixed and interact with only their neighbors.
But, the movement of members cannot be ignored in animal ecosystems,
human society, and others. Therefore, we will introduce diffusive travel-
ing of individuals into the fixed PDG. This is called the ’traveling PDG’
hereafter.
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Figure 4: The time series of the proportion of cooperators for p = 1.16 (a) and
p = 1.23 (b) in the traveling PDG.(n=64,9=0.7,N=1024)

A player located at the site of a two-dimensional square lattice takes ei-
ther a strategy of cooperation or defection, and at the same time each player
turns to either of four nearest-neighbor sites. Therefore, the state w;(¢;) of
the site 7 at time ¢; is specified by two variables, w;(t;) = {s:(¢;),di(¢;)},
where s,(t;) = {C, D} and d;(t;) = {N, E, S, W} denote the strategy and
direction, respectively.

The time evolution of the system is done by the following two steps.
First, the renewal of strategy s;(¢;) according to the total payoff by the
game is performed quite similarly with the fixed PDG described in the
previous section. Secondly, according to the direction d;(t;), each player
exchanges the site each other only when they stand opposite to each other
in the nearest neighbor sites. Therefore, in this case, the strategy of their
sites is replaced with each other. Both steps are carried out simultaneously.
After that each player takes a new direction set up at random. In other
words, the traveling of player is done completely at random, independently
to its strategy. The system evolves by repeating these rounds.

The proportion z(t;) of cooperators to the whole population at time ¢;
is a discrete dynamical variable, similarly to the fixed PDG. Figure 4 shows
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~ the time series z(t;) for p = 1.16 and p = 1.23. The proportion ﬂuctuates
continuously around the average.
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Figure 5: The steady state configurations in the traveling PDG. Black and gray
boxes denote cooperators and defectors respectively. (n = 64)

Depending on the values of the probability ¢ and the parameter p, the
lattice configuration formed fully after a long time is shown in Figure 5.
Comparing with Figure 2 in the case of the fixed PDG, it is understood that
the diffusion of individuals makes it difficult for cooperators to survive, but"
not impossible. The difference of the initial configuration has no important
effects except in the case of remarkably small q. We set ¢ = 0.7 in the
following analysis.

In Figure 6, the rate of the population of cooperators is shown as a
function of the parameter p. The homogeneous state (p < 1.14), the
annihilation state (1.50 < p) of cooperators and the coexistent states
(1.14 < p < 1.50) are observed. Discontinuous transitions among six coex-
istent states occur at p = 1.167, p = 1.20, p = 1.25, p = 1.33, p = 1.40.
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Each coexistent state is steady and the values of the proportion of cooper-
ators are z ~ 0.88, 0.76, 0.67, 0.65, 0.44, 0.34, respectively.
Investigating the time series repeating alternately the fixed and travel-
ing PDG at regular intervals verified the stability of the coexistent state.
For a given parameter p, the fluctuating proportion of cooperators in the
coexistent state of the traveling PDG has an almost constant averaged
value. In the traveling PDG, the steady state is independent of the initial
state, and there exists the homogeneous state of cooperators in the region
1 < p < 1.14. These results coincide with the result by Szabo and Toke[7].
They have introduced a stochastic factor to their model. It is interesting
that the proportion of cooperators is larger for the traveling PDG than for
the fixed PDG in the region p < 1.167. The cooperators in the traveling
PDG are impossible to exist in p > 3/2. This threshold value p = 3/2 is the
point where the square clusters 4C and 9C cannot grow. It is likely that
the diffusive traveling of individuals cuts and deforms the self-organized
structure, and makes the existence of cooperator clusters difficult.
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Figure 6: The averaged proportion of cooperators as a function of p in the
traveling PDG.(n=64,9=0.7,N=128)

4 Dynamic Characteristics of the Coexistent
State

In order to study the dynamic characteristics of a system, the power
spectrum of time series is useful. The discrete Fourier transform of time
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series z(t;), (j = 1,‘2, .+« , N) is defined by
X(fk Z ,2,,(, D(k-1)/N (k=1,2,---,N),

where fi is a discrete frequency, and fo = 0. The power spectrum of time
series z(t;) is given by | |
| P =X
We can say the following features on the power spectrum. (i) If the time
series is periodic or quasi-periodic with period T, the spectrum has a sharp
peak at frequency 1/T. (ii) In the case of non-periodic time series, there is
a frequency region where the spectrum decreases by a power of frequency

P(fe) ~ fi"-

The power 7 shows the strength of time correlation. (iii) In the region of fre-
quency where the spectrum is independent of frequency, the time series has
no correlation and is called white noise. The white noise spectrum appears
generally in a low frequency, and the correlation time, which is 2 maximum
time remaining time correlation, gives the time constant characterizing the
physical origin of fluctuation.

The power spectrum of time series in the fixed PDG is plotted on a log-
log graph in Figure 7. The spectrum for p = 1.23 has peaks corresponding
to periods 3,4 and 6. In the case of p = 1.63, the power spectrum does not
depend on the frequency in a wide region, which means that the state is
chaotic.
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Figure 7: The power spectrum of z(t;) for p = 1.23 (a) and p = 1.63 (b) in the
fixed PDG.(n=64,q=0.7,N=1024)

In the traveling PDG, the average of the power spectrums for 20 sets
of time series with the same initial configuration is considered. Figure 8 is
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the averaged power spectrum for p = 1.16,p = 1.18,p = 1.23,p = 1.29.p =
1.37,p = 1.45, which belong to six coexistent states respectively. From the
feature of the power spectrum, the coexistent states are divided into two
regions as follows: ( I') the parameter range (8/7 < p < 7/6), where the
spectrum obeys a power-law. (II) the parameter range (7/6 < p < 3/2),
where the spectrum obeys Lorentzian-form.
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Figure 8: The power spectrum of z(t;) for p = 1.16(a), p = 1.18(b), p = 1.23(c),
p=1.29(d), p=1.37(e) and p = 1.45(f) in the traveling PDG.
The power exponent v in the region ( I) is that 4 ~ 1.4. It means that
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the correlation of every time scale exists in the time series z(t;), which
is characteristics for the critical state. In the region (II) of Lorentzian
spectrum, ¥ ~ 1.1 (for 7/6 < p < 6/5), vy ~ 1.3 (for 6/5 < p < 5/4), v ~
1.5 (for 5/4 < p < 4/3), v~ 1.9 (for 4/3 < p < 7/5), v ~ 2.1 (for 7/5 <
p < 3/2). The time correlation increases with the value of p. This means
that the fluctuation introduced by random traveling of individuals is turned
to the fluctuation with strong correlation by local interaction of the system.
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Figure 9: The proportion of cooperators as a function of p, in the fixed PDG
(a) and in the traveling PDG (b). Thin and thick lines show the non-forced case
and the case with external compulsion respectively. (u=0.2)

5 Effects of External Compulsion

~ The influence of the external force to cooperate is interesting as a prac-
tical problem. We assume that individuals are forced to cooperate stochas-
tically at each round of a spatial prisoner’s dilemma game. To put it con-
cretely, the strategy of an individual selected at random in a probability u
is changed to cooperate, if it is defect; but it is not changed, if it is cooper-
ate. This step in the time evolution is called the external compulsion, and
u is a parameter which denotes the degree of compulsion.

The averaged proportion of cooperators in the steady state except for
the transient region is represented against parameter p in figure 9(a) and
9(b), where the figure 3 and 6 without external forces are shown together.

In figure 9(a) of the fixed PDG, the external compulsion to cooperate
brings negative effects except in the region of small p. At p > 1.5, the
proportion falls into the level only of external probability. This fact means
that the spatial local structure is important for cooperators to survive, and
the random force to cooperate brings the opposite effect.
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It will be noticed that in the traveling PDG the random compulsion to
cooperate brings negative effects in the region of all p. This suggests that
the random external compulsion is fatal rather than the diffusive traveling
of individuals to break the spatial local structure. It will be didactic that
forcing indiscriminately individuals to cooperate does not produce any re-
sults that are expected, but a contrary effect obstructing the spontaneous
emergence of cooperation.

6 Conclusions

The effects of the random traveling of individuals in the spatial evo-
lutionary prisoner’s dilemma game were investigated as contrasted with
the game without traveling. The annihilation state where cooperators are
wiped out, arose at smaller values of p (1.5 < p) for the traveling PDG than
that (1.67 < p) for the fixed PDG. The fixed PDG produced the periodic
state at 1.5 < p < 1.6, and the chaotic state at 1.6 < p < 1.67. If random
traveling is introduced to this system, the circumstances around each indi-
vidual will become to be similar to that of a homogeneous system from the
point of view of the mean field approximation. Thus, it is probable that
the annihilation state arises in this region of the traveling PDG.

In the traveling PDG, the coexistent state appeared in the region of
1.14 < p < 1.5, between the homogeneous state and the annihilation state.
The coexistent state in the fixed PDG was the periodic state for 1 < p < 1.6
and chaotic state for 1.6 < p < 1.67. It was pointed out that the parameter
range of the coexistent state in the traveling PDG was divided into two
ranges which were ( I ) a power-law spectrum range (8/7 < p < 7/6) and
(II) Lorentzian spectrum range (7/6 < p < 3/2). In the region (1), the
power exponent y was equal to 1.4. The power-law spectrum means that the
long time correlation exists in the time series z(¢;), which is characteristics
for the critical state. The range ( I ) was a region where the proportion of
cooperators was larger in the traveling PDG than in the fixed PDG. From
these results, it is suggested that random traveling of individuals in this
parameter range leads to the effect organizing the cluster of cooperators.

The effects of external compulsion are paradoxical. It has been clarified
that the random external force does not bring any positive results in the
self-organized system by the local interaction.
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